

Wednesday 18 June 2014 – Afternoon

A2 GCE MATHEMATICS

4724/01 Core Mathematics 4

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

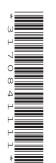
- Printed Answer Book 4724/01
- List of Formulae (MF1)
- Other materials required:
- Scientific or graphical calculator

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

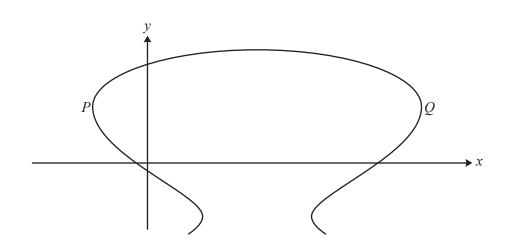

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.



- 1 Express $x + \frac{1}{1-x} + \frac{2}{1+x}$ as a single fraction, simplifying your answer. [3]
- 2 The points O(0, 0, 0), A(2, 8, 2), B(5, 5, 8) and C(3, -3, 6) form a parallelogram *OABC*. Use a scalar product to find the acute angle between the diagonals of this parallelogram. [5]
- 3 (i) Find the first three terms in the expansion of (1-2x)^{-1/2} in ascending powers of x, where |x| < 1/2. [3]
 (ii) Hence find the coefficient of x² in the expansion of x+3/√(1-2x). [2]

4 Show that
$$\int_{0}^{\frac{1}{4}\pi} \frac{1-2\sin^{2}x}{1+2\sin x \cos x} dx = \frac{1}{2}\ln 2.$$
 [5]

- 5 The equations of three lines are as follows.
 - Line A: $\mathbf{r} = \mathbf{i} + 4\mathbf{j} + \mathbf{k} + s(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ Line B: $\mathbf{r} = 2\mathbf{i} + 8\mathbf{j} + 2\mathbf{k} + t(\mathbf{i} + 3\mathbf{j} + 5\mathbf{k})$ Line C: $\mathbf{r} = -\mathbf{i} + 19\mathbf{j} + 15\mathbf{k} + u(2\mathbf{i} - 4\mathbf{j} - 4\mathbf{k})$
 - (i) Show that lines *A* and *B* are skew.
 - (ii) Determine, giving reasons, the geometrical relationship between lines A and C. [2]

[4]

The diagram shows the curve with equation $x^2 + y^3 - 8x - 12y = 4$. At each of the points *P* and *Q* the tangent to the curve is parallel to the *y*-axis. Find the coordinates of *P* and *Q*. [8]

7 A curve has parametric equations

$$x = 2\sin t, \quad y = \cos 2t + 2\sin t$$

for $-\frac{1}{2}\pi \le t \le \frac{1}{2}\pi$. (i) Show that $\frac{dy}{dx} = 1 - 2 \sin t$ and hence find the coordinates of the stationary point. [5] (ii) Find the cartesian equation of the curve. [3] (iii) State the set of values that x can take and hence sketch the curve. [3]

8 (i) Use division to show that
$$\frac{t^3}{t+2} \equiv t^2 - 2t + 4 - \frac{8}{t+2}$$
. [3]

(ii) Find
$$\int_{1}^{2} 6t^2 \ln(t+2) dt$$
. Give your answer in the form $A + B \ln 3 + C \ln 4$. [6]

9 Express
$$\frac{2+x^2}{(1+2x)(1-x)^2}$$
 in partial fractions and hence show that $\int_0^{\frac{1}{4}} \frac{2+x^2}{(1+2x)(1-x)^2} dx = \frac{1}{2} \ln \frac{3}{2} + \frac{1}{3}$. [9]

10 A container in the shape of an inverted cone of radius 3 metres and vertical height 4.5 metres is initially filled with liquid fertiliser. This fertiliser is released through a hole in the bottom of the container at a rate of 0.01 m^3 per second. At time *t* seconds the fertiliser remaining in the container forms an inverted cone of height *h* metres.

[The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.]

(i) Show that
$$h^2 \frac{dh}{dt} = -\frac{9}{400\pi}$$
. [5]

- (ii) Express h in terms of t. [4]
- (iii) Find the time it takes to empty the container, giving your answer to the nearest minute. [2]

END OF QUESTION PAPER

Ques	tion	Answer	Marks	Gu	idance
1	$x(1-x^2)$	+(1+x)+2(1-x) oe	M1	condone one sign error	if M0B0, SC1 for any pair of terms correctly combined into a single fraction, may be
	$1 - x^2$ oe		B1	any correct denominator common to all three fractions	unsimplified
	$\frac{3-x^3}{1-x^2} 0$	be cao	A1	must be fully simplified; mark the final answer	eg $\frac{x(3-x^3)}{x(1-x^2)}$ oe may score a maximum of M1B1A0
			[3]		
2	$\pm ((3-2))$	i + (-3 - 8)j + (6 - 2)k) soi	B1	$NB \mathbf{i} - 11 \mathbf{j} + 4 \mathbf{k}$	or
		$-11\mathbf{j} + 4\mathbf{k}$). $\pm(5\mathbf{i} + 5\mathbf{j} + 8\mathbf{k})$ onals used ; evaluation not essential	M1	if M0 SC2 for 84° (or 84.5°), or 52(.3°) or 39° or (38.5° or 43(.2°) or 46(.0°) found from scalar product or SC1 for the equivalent obtuse angle	B3 for correct use of Cosine Rule (using the midpoint of the diagonals of the parallelogram) $[\cos \theta] = \frac{34.5 + 28.5 - 72}{2\sqrt{34.5}\sqrt{28.5}} \text{ oe}$
	$ \begin{array}{c} \pm (1 \times 5 + 1) \\ = \sqrt{1^2 + 1} \end{array} $	$\frac{1}{1^{2}+4^{2}} \times \frac{5+4\times8}{\sqrt{5^{2}+5^{2}+8^{2}}\cos\theta}$ oe	Al	must be fully correct	
		$\frac{\pm 18}{\sqrt{138} \times \sqrt{114}}$	Al		B2 for 81.7 to 82° unsupported
	81.7 to 82	2-	A1 [5]	1.4 to 1.43 rad	or B3 + B2 possible for Cosine Rule

Qu	lestion	Answer	Marks	Gu	idance
3	(i)	$1 + (-\frac{1}{2})(-2x) + (-\frac{1}{2})(\frac{-3}{2})\frac{(\pm 2x)^2}{2!}[+]$	B1 B1	first two terms third term	allow recovery from omission of brackets do not allow $2x^2$ unless fully recovered in answer
		$1 + x + \frac{3}{2}x^2$ oe	B1 [3]		
	(ii)	use of $(x+3) \times \text{their}(1+x+\frac{3}{2}x^2)$ coefficient is 5.5 oe	M1 A1 [2]	or B2 www in either part	may be embedded (eg $5.5x^2$ alone or in expansion)
4		$\int \frac{\cos 2x}{1+\sin 2x} (\mathrm{d}x)$	B1* B1*	$\cos 2x = 1 - 2\sin^2 x$ or (1 +) $\sin 2x = (1 +) 2\sin x \cos x$ seen numerator and denominator both correct in the integral soi	if B0B0M0A0, SC4 for $F[x] = \frac{1}{2}\ln(1 + 2\sin x \cos x)$ or $\frac{1}{2}\ln(1 + \sin 2x)$ final mark may still be awarded
		$F[x] = k \ln(1 + \sin 2x) \text{ soi}$ $k = \frac{1}{2}$	M1dep*	or $k\ln(1 + u)$ or $k\ln(u)$ following their substitution www correct k for their substitution	
		$\frac{1}{2}\ln(1 + \sin(\frac{\pi}{2})) - \frac{1}{2}\ln(1 + 0)$ = $\frac{1}{2}\ln 2$	A1 AG	correct use of limits www	minimum working: $\frac{1}{2}\ln 2 - \frac{1}{2}\ln 1$ or $\frac{1}{2}\ln(1+1)$ oe
			[5]		

⁴⁷²⁴

Q	uestion	Answer	Marks	Gu	idance
<u>Q</u> 5	(i)	Answer $1-s = 2+t$ $4+2s = 8+3t$ $1+2s = 2+5t$ value of either s or t obtained from valid methodcorrect pair of valueseg $1+2\times0.2 \neq 2+5\times-1.2$ oe isw NB A0 for $1+2\times0.2 = 2+5\times-1.2$ unless clarified by suitable comment	Marks B1 M1 A1 A1 [4]	Gufor all three equationsNB third equation may appear later, orwith values already substitutedeqns (i) and (ii): $s = 0.2$, $t = -1.2$ eqns (i) and (iii): $s = -4/7$, $t = -3/7$ eqns (ii) and (iii): $s = -4/7$, $t = -3/7$ eqns (ii) and (iii): $s = 4.25$, $t = 1.5$ correct substitution of correct values incorrect equation	or M1 for one value (of <i>s</i> or <i>t</i>) found from one pair of equations A1 for substitution of this value (of s or <i>t</i>) in third equation and obtaining the other parameter (ie of <i>t</i> or <i>s</i>); NB (0.2, -0.12) or $(^{-4}/_{7}, ^{-12}/_{7})$ or (4.25, -5.25) if <i>s</i> found first and ($-2.5, -1.2$) or $(^{19}/_{14}, ^{-3}/_{7})$ or ($-2.5, 1.5$) if <i>t</i> found first or find same parameter from second pair of equations A1 for correct demonstration of inconsistency NB clear statement needed if two different values of same parameter found
5	(ii)	$2\mathbf{i} - 4\mathbf{j} - 4\mathbf{k} = -2(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ oe eg line <i>A</i> goes through (1, 4, 1) but line <i>C</i> goes through (1, 15, 11), so they do not coincide so the lines are parallel eg demonstration of different <i>y</i> or <i>z</i> values on each line for (say) <i>x</i> = 1, so lines are parallel	B1 B1 [2]	allow equivalent in words, but scale factors must be correct	eg direction of A is $-\frac{1}{2}$ ×direction of C

Mark Scheme

Question	Answer	Marks	Gu	idance
6	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	or $2x \frac{\mathrm{d}x}{\mathrm{d}y}$	if B0B0 M0
	$2x - 12\frac{\mathrm{d}y}{\mathrm{d}x} - 8$	B1	$3y^2 - 8\frac{\mathrm{d}x}{\mathrm{d}y} - 12$	SC2 for $\frac{dy}{dx} =$
	their $3y^2 \frac{dy}{dx} - 12 \frac{dy}{dx} = 8 - 2x$ soi	M1	their $2x \frac{dx}{dy} - 8 \frac{dx}{dy} = -3y^2 + 12$	$\frac{1}{3}(-x^2+8x+12y+4)^{\frac{-2}{3}} \times (-2x+8+12\frac{dy}{dx})$ M1 may be earned for setting correct
	must be two terms on each side and must follow from RHS $= 0$		must be two terms on each side must follow from RHS $= 0$	denominator equal to 0
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8 - 2x}{3y^2 - 12} \text{ oe}$	A1	This mark may be implied if $\frac{dx}{dy} = 0$ is substituted and there is no evidence for an incorrect expression for $\frac{dx}{dy}$	
	their $3y^2 - 12 = 0$	M1*		$x \neq 4$ not required
	$y = (\pm) 2$	A1	A0 if $\frac{dy}{dx}$ incorrect	
	substitution of their positive <i>y</i> value in original equation	M1dep*		ignore substitution of – 2
	x = 10, x = -2 and no others cao	A1 [8]	A0 if $\frac{dy}{dx}$ incorrect	condone omission of formal statement of coordinates $(10, 2)$ and $(-2, 2)$

4724

Mark Scheme

Ques	stion	Answer	Marks	Gu	idance
7 ((i)	$\frac{\mathrm{d}y}{\mathrm{d}t} = -2\sin 2t + 2\cos t \ \mathrm{soi}$	B1	NB $\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos t$	if B0M0A0 SC3 for $\frac{dy}{dx} = 1 - x$ from correct Cartesian
		$\frac{dy}{dx} = \text{their}\frac{\frac{dy}{dt}}{\frac{dx}{dt}} \text{ oe}$	M1		equation seen in part (i) or part (ii) B1 for substitution of $x = 2\sin t$
		$\frac{-2\sin 2t + 2\cos t}{2\cos t}$ soi	A1		
		$\frac{-4\sin t\cos t + 2\cos t}{2\cos t} \text{ or } \frac{2\cos t(-2\sin t + 1)}{2\cos t} \text{ and}$ completion to $1 - 2\sin t$ www	A1	or equivalent intermediate step	
		(1, 1½)	B1 [5]	NB $t = \frac{\pi}{6}$	from $1 - 2\sin t = 0$
7 ((ii)	$(y=)\ 1-2\sin^2t+2\sin t$	B1	may be awarded after correct substitution for x eg (y =) $1 - \frac{x^2}{4} - \sin^2 t + 2\sin t$	or $(y =) x + \cos 2t$
		substitution of $\sin t = \frac{1}{2}x$ to eliminate t	M1		substitution of $t = \sin^{-1}(x/2)$ to eliminate t
		$y = 1 + x - \frac{1}{2}x^2$ oe isw	A1	or B3 www	$y = x + \cos 2(\sin^{-1}(x/2))$ oe isw
			[3]		

Q	uestion	Answer	Marks	Gu	idance
7	(iii)	$-2 \le x \le 2 \text{ or } x \ge -2 \text{ (and) } x \le 2 \text{ or } x \le 2$	B1	сао	
		sketch of negative quadratic with endpoints in 1^{st} and 3^{rd} quadrants	M1	RH point must be to the right of the maximum	
		positive <i>y</i> -intercept and one distinguishing feature isw	A1		one from: endpoints $(-2, -3)$ and $(2, 1)$, vertex at $(1, 1\frac{1}{2})$, y – intercept is $(0, 1)$, x - intercept is $(1 - \sqrt{3}, 0)$
			[3]		
8	(i)	t^2 in quotient and $t^3 + 2t^2$ seen	B1	or $\frac{t(t^2 - 4) + 4t}{(t+2)}$	or $\frac{(t+2)^3 - 6t^2 - 12t - 8}{(t+2)}$
		$-2t$ in quotient and $-2t^2 - (-2t^2 - 4t) = 4t$ seen	B1	$\frac{t(t+2)(t-2)}{(t+2)} + \frac{4t}{t+2}$	$\frac{(t+2)^3}{(t+2)} - \frac{6((t+2)^2 - 4t - 4) + 12t + 8}{(t+2)}$ oe
		completion to obtain correct quotient and remainder identified www	B1	$t(t-2) + \frac{4(t+2) - 8}{t+2}$	$(t+2)^2 - 6(t+2) + \frac{12t+16}{t+2}$ oe
					$= t^{2} + 4t + 4 - 6t - 12 + \frac{12(t+2) - 8}{t+2}$ oe
					both steps needed for final B1
			[3]		
8	(i)	alternatively $\frac{t^3}{t+2} \equiv At^2 + Bt + C + \frac{D}{(t+2)}$	B1	or $t^3 \equiv (At^2 + Bt + C)(t+2) + D$	or B1 for $\frac{t^2(t+2) - 2t^2}{(t+2)}$
		equate coefficients to obtain correctly $A = 1, 0 = 2A + B$ and $B = -2$ www	B1		B1 for $t^2 + \frac{-2t(t+2) + 4t}{(t+2)}$
		0 = 2B + C and $0 = 2C + D$ obtained and solved correctly www	B1		B1 for $t^2 - 2t + \frac{4(t+2) - 8}{(t+2)}$
			[3]		

Qı	lestion	Answer	Marks	Gu	idance
8	(ii)	integration by parts with $u = \ln(t+2)$ and $dv = 6t^2$ to obtain $f(t) \pm \int g(t)(dt)$	M1*	$f(t)$ must include t^3 and $g(t)$ must not include a logarithm	ignore spurious dx etc
		$2t^{3}\ln(t+2) - \int \frac{2t^{3}}{t+2}(dt) \operatorname{cao}$	A1		alternatively, following $u = t + 2$
		result from part (i) seen in integrand; must follow award of at least first M1	M1*	no integration required for this mark	$\int 2(u^2 - 6u + 12 - \frac{8}{u}) du$ oe
		$F[t] = 2t^{3} \ln(t+2) \pm \frac{2t^{3}}{3} \pm 2t^{2} \pm 8t \pm 16 \ln(t+2)$	A1	$2t^{3}\ln(t+2) - \frac{2t^{3}}{3} + 2t^{2} - 8t + 16\ln(t+2)$	5
					$2t^3\ln(t+2)$
		their F[2] – F[1]	M1dep*	at least one of their terms correctly integrated	NB limits following substitution are $u = 4$ and $u = 3$
		$-6^{2/3} - 18\ln 3 + 32\ln 4$ oe cao	A1		
			[6]		
9		$\frac{A}{1+2x} + \frac{B}{1-x} + \frac{C}{(1-x)^2}$	B1	or $\frac{A}{1+2x} + \frac{Bx+C}{(1-x)^2}$	if B0M0, SC1 for $\frac{1}{1+2x}$ seen
		may be seen in later work		may be seen later in later work	
		$2 + x^{2} \equiv A(1 - x)^{2} + B(1 + 2x)(1 - x) + C(1 + 2x)$	M1	or $A(1-x)^2 + (Bx + C)(1 + 2x)$	allow only sign errors, not algebraic errors
		A = 1, B = 0 and $C = 1$ www	A1A1A1		
		$\int \left(\frac{1}{1+2x} + \frac{1}{(1-x)^2}\right) dx =$			
		$a\ln(1+2x) + b(1-x)^{-1}$	M1*	<i>a</i> and <i>b</i> are non-zero constants	ignore extra terms
		$F(x) = \frac{1}{2}\ln(1+2x) + (1-x)^{-1}$	A1		
		<i>their</i> $\frac{1}{2}\ln(\frac{3}{2}) + \frac{4}{3} - (\frac{1}{2}\ln 1 + 1)$	M1dep*		

4724

Qı	lestion	Answer	Marks	Gu	idance
		$\frac{1}{2}\ln(\frac{3}{2}) + \frac{4}{3} - 0 - 1$	A1 [9]	and completion to given result www	NB $\frac{1}{2}\ln(\frac{3}{2}) + \frac{1}{3}$
10	(i)	$\frac{\mathrm{d}V}{\mathrm{d}t} = \pm 0.01$	B1		
		by similar triangles, $\frac{h}{4.5} = \frac{r}{3}$	B1	may be implied by $r = \frac{2h}{3}$ oe	
		$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{4}{9}\pi h^2 \text{ oe}$	B1		
		$\frac{\mathrm{d}h}{\mathrm{d}t} = \pm 0.01 \times \mathrm{their} \frac{\mathrm{d}h}{\mathrm{d}V} \mathrm{oe}$	M1	use of Chain rule	may follow from incorrect differentiation: expressions must be a function of either r or h or both
		$-0.01 = \left(\frac{4}{9}\pi h^2\right) \times \frac{\mathrm{d}h}{\mathrm{d}t}$	A1 [5]	completion to given result www	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-0.09}{4\pi} = \frac{-9}{400\pi}$
10	(ii)	$\int h^2 dh = \int \frac{-9}{400\pi} dt \text{oe soi}$	M1	separation of variables	if no subsequent work, integral signs needed, but allow omission of dh or dt, but must be correctly placed if present;
		$\frac{h^3}{3} = \frac{-9}{400\pi}t(+c)$	Al		
		substitution of $t = 0$ and $h = 4.5$ in their expression following integration	M1	expression must include c and powers must be correct on each side	
		$h = \sqrt[3]{\frac{729}{8} - \frac{27t}{400\pi}}$ oe isw	A1	allow – 0.0215 or – 0.02148591r.o.t to 4 sf or more and similarly 91.125	$91.125 = \frac{729}{8}$
10			[4]		
10	(iii)	set $h = 0$ and solve to obtain positive t	M1	or $(t=)\frac{1}{3}\pi \times 3^2 \times 4.5 \div 0.01 \ (=1350\pi)$	NB $1350\pi = 4241.150082$
		71 minutes cao	A1 [2]		